推进技术 ›› 2019, Vol. 40 ›› Issue (11): 2401-2419.DOI: 10.13675/j.cnki. tjjs. 180779
• 综述 • 下一篇
李佳楠1,雷凡培2,周立新1,杨岸龙1
出版日期:
2021-08-15
发布日期:
2021-08-15
基金资助:
Online:
2021-08-15
Published:
2021-08-15
摘要: 为加深对背压振荡环境下雾化特性的认识,针对在液体火箭发动机中广泛应用的气液同轴直流式喷嘴、撞击式喷嘴与离心式喷嘴,综述了背压振荡环境下单束液体射流、气液同轴射流、射流撞击以及旋流雾化特性的研究进展,总结了背压振荡影响雾场的主要作用机制,阐述了以往研究中存在的一些问题以及需要突破的若干关键技术难题。通过综述可知,背压振荡主要通过两个方面影响雾场:一是通过改变喷注压降影响喷射,继而影响雾化过程;二是通过振荡的气相流场直接作用于雾场。背压振荡环境下的雾化研究仍需要开展大量工作,且需要突破以下几个技术难点:在试验方面,需要设计可以产生高频率、高幅值压力振荡的反压舱装置,同时对雾场的干扰要降到最小;发展先进的光学诊断方法,可以用于反压舱内雾场信息的提取;在数值模拟方面,需要开展雾化过程的高精度数值模拟,同时研究压力波的产生、发展及演化过程,在这两点基础上研究背压振荡与雾场的相互作用。
李佳楠, 雷凡培, 周立新, 杨岸龙. 液体火箭发动机背压振荡环境下的雾化特性研究进展[J]. 推进技术, 2019, 40(11): 2401-2419.
LI Jia-nan, LEI Fan-pei, ZHOU Li-xin, YANG An-long. Recent Advances of Atomization Characteristics under Oscillating Backpressure Conditions in Liquid Rocket Engines[J]. Journal of Propulsion Technology, 2019, 40(11): 2401-2419.
[1] 杨立军, 富庆飞. 液体火箭发动机推力室设计[M]. 北京: 北京航空航天大学出版社, 2013. [2] 黄玉辉. 液体火箭发动机燃烧稳定性理论、数值模拟和实验研究[D]. 长沙: 国防科技大学, 2001. [3] Goy C J, James S R, Rea S. Monitoring Combustion Instabilities: E. ON UK’s Experience[M]. USA: American Institute of Astronautics and Aeronautics, 2005. [4] Zhou J, Chen W, Wang Y, et al. The Phenomena of Combustion Instability in Bipropellant Rocket Engines Using NTO/Hydrazine-Sorts[C]. Vancouver: 55th International Astronautical Congress, 2004. [5] Harrje D T, Reardon F H. Liquid Propellant Rocket Combustion Instability[R]. NASA SP-194, 1972. [6] Yang V, Anderson W E. 液体火箭发动机燃烧不稳定性[M]. 张宝炯, 洪 鑫, 陈 杰, 译. 北京: 科学出版社, 2001. [7] O’Connor J, Acharya V, Lieuwen T. Transverse Combustion Instabilities: Acoustic, Fluid Mechanic, and Flame Processes[J]. Progress in Energy and Combustion Science, 2015, 49: 1-39. [8] Yang X. Simulation of Atomization Process Coupled with Forced Perturbation with a View to Modeling and Controlling Thermoacoustic Instability[D]. UK: The University of Manchester, 2016. [9] Huynh C, Ghafourian A, Mahalingam S, et al. Combustion Design for Atomization Study in Liquid Rocket Engines[R]. AIAA92-0465. [10] Anderson W E, Miller K L, Ryan H M, et al. Effects of Periodic Atomization on Combustion Instability in Liquid-Fueled Propulsion Systems[J]. Journal of Propulsion and Power, 1998, 14(5): 818-825. [11] Anderson W E. The Effects of Atomization on Combustion Stability[D]. USA: The Pennsylvania State University, 1996. [12] Chao C C, Heister S D. Contributions of Atomization to F-1 Engine Combustion Instabilities[J]. Engineering Analysis with Boundary Elements, 2004, 28: 1045-1053. [13] Giuliani F, Gajan P, Diers O, et al. Influence of Pulsed Entries on a Spray Generated by Air-Blast Injection Device: an Experimental Analysis on Combustion Instability Processes in Aeroengines[J]. Proceedings of the Combustion Institute, 2002, 29: 91-98. [14] Schulze M, Chmid M, Sattelmayer T. Influence of Atomization Quality Modulation on Flame Dynamics in a Hypergolic Rocket Engine[J]. International Journal of Spray and Combustion Dynamics, 2016, 8(3): 1-16. [15] Anderson W E, Ryan H M, Santoro R J, et al. Combustion Instability Mechanisms in Liquid Rocket Engines Using Impinging Jet Injectors[R]. AIAA95-2357. [16] Kim J S, Williams F A. Acoustic-Instability Boundaries in Liquid-Propellant Rockets: Theoretical Explanation of Empirical Correlation[J]. Journal of Propulsion and Power, 1996, 12(3): 621-624. [17] Rayleigh L. The Explanation of Certain Acoustical Phenomena[J]. Nature, 1878, 18: 319-321. [18] Conrad T, Bibik A, Lee J, et al. Control of Combustion Instabilities by Fuel Spray Modification Using Smart Fuel Injector[R]. AIAA2003-4937. [19] Conrad T, Bibik A, Shcherbik D, et al. “Slow” Control of Combustion Instabilities by Fuel Spray Modification Using Smart Fuel Injector[R]. AIAA2004-1034. [20] Golovanevsky B, Levy Y. Suppression of Combustion Instability Using an Aerodynamically Exited Atomizer[C]. Citeseer: Proceedings of 11th International Symposium for Applications of Laser Techniques to Fluid Mechanics, 2002. [21] Guyot D, Bothien M, Moeck J, et al. Active Control of Combustion Instability Using Fuel Flow Modulation[J]. Proceedings in Applied Mathematics and Mechanics, 2007, 7(1). [22] Oefelein J C, Yang V. Comprehensive Review of Liquid-Propellant Combustion Instabilities in F-1 Engine[J]. Journal of Propulsion and Power, 1993, 9(5): 657-677. [23] 康忠涛, 李向东, 毛雄兵, 等. 液体火箭发动机中气液同轴直流式喷嘴研究综述[J]. 航空学报, 2018, 39(9). [24] Yang A, Li B, Yang S, et al. Periodic Atomization Characteristics of an Impinging Jet Injector Element Modulated by Klystron Effect[J]. Chinese Journal of Aeronautics, 2018, 31(10): 1973-1984. [25] Kang Z, Wang Z, Li Q, et al. Review on Pressure Swirl Injector in Liquid Rocket Engine[J]. Acta Astronautica, 2018, 145: 174-198. [26] Rayleigh L. On the Instability of Jets[J]. Proceedings of the London Mathematical Society, 1878, 10: 4-13. [27] Reitz B. Mechanism of Atomization of a Liquid Jet[J]. Physics of Fluids, 1982, 25: 1730-1742. [28] Lefebvre A H. Atomization and sprays[M]. New York: Hemisphere Press, 1989. [29] Li X, Chen T. Liquid Jet Atomization in a Compressible Gas Streams[J]. Journal of Propulsion and Power, 1999, 15(3): 369-376. [30] Shinjo J, Umemura A. Simulation of Liquid Jet Primary Breakup: Dynamics of Ligament and Droplet Formation[J]. International Journal of Multiphase Flow, 2010, 36(7): 513-532. [31] Shinjo J, Umemura A. Detailed Simulation of Primary Atomization Mechanism in Diesel Jet Sprays[J]. Proceedings of the Combustion Institute, 2011, 33: 2089-2097. [32] De Villiers E, Gosman A D, Weller H G. Large Eddy Simulation of Primary Diesel Spray Atomization[R]. SAE TP, 2004-01-0100. [33] Salvafor F J, Romero J V, Rosselló M D. Numerical Simulation of Primary Atomization in Diesel Spray at Low Injection Pressure[J]. Journal of Computational and Applied Mathematics, 2016, 291: 94-102. [34] Grosshans H, Movaghar A, Cao I, et al. Sensitivity of VOF Simulations of the Liquid Jet Breakup to Physical and Numerical Parameters[J]. Computers and Fluids, 2016, 136: 312-323. [35] Donnelly R J, Glaberson W. Experiments on the Capillary Instability of a Liquid Jet[J]. Proceedings of the Royal Society of London, 1966, 290(1423): 547-556. [36] Goedde E F, Yuen M C. Experiments on Liquid Jet Instability[J]. Journal of Fluid Mechanics, 1970, 40(8): 495-511. [37] Dumouchel C. On the Experimental Investigation on Primary Atomization of Liquid Streams[J]. Experiments in Fluids, 2008, 45(3): 371-422. [38] Crane L, Birch S, McCormack P D. The Effect of Mechanical Vibration on the Break-Up of a Cylindrical Water Jet in Air[J]. British Journal of Applied Physics, 1964, 15: 743-751. [39] McCormack P D, Crane L, Birch S. An Experimental and Theoretical Analysis of Cylindrical Liquid Jets Subjected to Vibration[J]. British Journal of Applied Physics, 1965, 16: 395-409. [40] Chigier N. Breakup of Liquid Sheets and Jets[R]. AIAA99-3640. [41] Miesse C C. The Effect of Ambient Pressure Oscillations on the Disintegration and Dispersion of a Liquid Jet[J]. Jet Propulsion, 1955, 25(3): 525-534. [42] Heister S D, Rutz M W, Hilbing J H. Effect of Acoustic Perturbations on Liquid Jet Atomization[J]. Journal of Propulsion and Power, 1997, 13(1): 82-88. [43] Srinivasan V, Salazar A J, Saito K. Modeling the Disintegration of Modulated Liquid Jets Using Volume-of-Fluid (VOF) Methodology[J]. Applied Mathematical Modelling, 2011, 35: 3710-3730. [44] Srinivasan V, Salazar A, Saito K. Numerical Simulation of the Disintegration of Forced Liquid Jet Using Volume-of-Fluid Method[J]. International Journal of Computational Fluid Dynamics, 2010, 24(8): 317-333. [45] Yang X, Turan A. Simulation of Liquid Jet Atomization Coupled with Forced Perturbation[J]. Physics of Fluids, 2017, 29(2). [46] Popinet S. Gerris: a Tree-Based Adaptive Solver for the Incompressible Euler Equations in Complex Geometries[J]. Journal of Computational Physics, 2002, 190(2): 572-600. [47] Popinet S. An Accurate Adaptive Solver for Surface-Tension Driven Interfacial Flows[J]. Journal of Computational Physics, 2009, 228(16): 5838-5886. [48] Heidmann M F, Groeneweg J F. Analysis of the Dynamic Response of Liquid Jet Atomization to Acoustic Oscillations[R]. NASA TN D-5339. [49] Vorob’Ev A P. Effect of Acoustic Oscillations on the Stability of a Plane Jet[J]. Fluid Dynamics, 1991, 26(4): 736-743. [50] Hoover D V, Ryan H M, Pal S, et al. Pressure Oscillation Effects on Jet Breakup[J]. Heat and Mass Transfer in Spray Systems HTD, 1991, 187: 27-36. [51] Carpentier J B, Baillot F. Behavior of Cylindrical Liquid Jets Evolving in a Transverse Acoustic Field[J]. Physics of Fluids, 2009, 21(2). [52] Ju D, Sun X, Jia X, et al. Experimental Investigation of the Atomization Behavior of Ehanol and Kerosene in Acoustic Fields[J]. Fuel, 2017, 202: 613-619. [53] Jia X, Huang Z, Ju D, et al. Effect of High Frequency Acoustic Field on Atomization Behavior of Ethanol and Kerosene[R]. SAE TP, 2017-01-2318. [54] Yang L, Jia B, Fu Q, et al. Stability of an Air-Assisted Viscous Liquid Sheet in the Presence of Acoustic Oscillations[J]. European Journal of Mechanics/B Fluids, 2018, 67: 366-376. [55] Gonzalez-Flesca M, Schmitt T, Ducruix S, et al. Large Eddy Simulations of a Transcritical Round Jet Submitted to Transverse Acoustic Modulation[J]. Physics of Fluids, 2016, 28(5). [56] Baillot F, Blaisot J, Boisdron G, et al. Behaviour of an Air-Assisted Jet Submitted to a Transverse High-Frequency Acoustic Field[J]. Journal of Fluid Mechanics, 2009, 640: 304-342. [57] Davis D, Chehroudi B. The Effects of Pressure and Acoustic Field on a Cryogenic Coaxial Jet[R]. AIAA2004-1330. [58] Davis D, Chehroudi B. Shear-Coaxial Jets from a Rocket-Like Injector in a Transverse Acoustic Field at High Pressures[R]. AIAA2006-0758. [59] Graham J, Leyva I, Rodriguez J, et al. On the Effect of a Transverse Acoustic Field on a Flush Shear Coaxial Injector[R]. AIAA2009-5142. [60] Hardi J S, Martinez H C G, Oschwald M. LOX Jet Atomization under Transverse Acoustic Oscillations[J]. Journal of Propulsion and Power, 2014, 30(2): 337-349. [61] Hua J, Gunaratne G, Talley D, et al. Dynamic-Mode Decomposition based Analysis of Shear Coaxial Jets with and Without Transverse Acoustic Driving[J]. Journal of Fluid Mechanics, 2016, 790: 5-32. [62] Leyva I, Rodriguez J, Chehroudi B, et al. Preliminary Results on Coaxial Jet Spread Angles and the Effects of Variable Phase Transverse Acoustic Fields[R]. AIAA2008-950. [63] Squire H B. Investigation of the Instability of a Moving Liquid Film[J]. British Journal of Applied Physics, 1953, 4: 167-169. [64] Taylor G. Formation of Thin Flat Sheets of Water[J]. Proceedings of the Royal Society of London, 1960, 259: 1-17. [65] Dombrowski N, Johns W R. The Aerodynamic Instability and Disintegration of Viscous Liquid Sheets[J]. Chemical Engineering Science, 1963, 18: 203-214. [66] Hasson D, Peck R E. Thickness Distribution in a Sheet Formation Formed by Impinging Jets[J]. AICHE Journal, 1964, 10(5): 752-754. [67] Dombrowski N, Hooper P C. A Study of the Sprays Formed by Impinging Jets in Laminar and Turbulent Flow[J]. Journal of Fluid Mechanics, 1963, 18: 392-400. [68] Heidmann M F, Priem R J, Humphrey J C. A Study of Sprays Formed by Two Impinging Jets[R]. NACA TN3835. [69] Heidmann M F, Humphrey J C. Fluctuations in a Spray Formed by Two Impinging Jets[R]. NACA TN2349. [70] Ryan H M, Anderson W E, Pal S, et al. Atomization Characteristics of Impinging Jets[J]. Journal of Propulsion and Power, 1995, 11: 135-145. [71] Ma D, Chen X. Atomization Patterns and Breakup Characteristics of Liquid Sheets Formed by Two Impinging Jets[R]. AIAA2011-97. [72] Chen X, Ma D, Yang V. Mechanism Study of Impact Wave in Impinging Jets Atomization[R]. AIAA2012-1089. [73] Chen X, Ma D, Yang V. High-Fidelity Numerical Simulations of Impinging Jet Atomization[R]. AIAA2012-4328. [74] Chen X, Yang V. Thickness-based Adaptive Mesh Refinement Methods for Multi-Phase Flow Simulations with Thin Regions[J]. Journal of Computational Physics, 2014, 269: 22-39. [75] Anderson W E, Ryan H M, Santoro R J. Impact Wave-Based Model of Impinging Jet Atomization[J]. Atomization and Sprays, 2006, 16: 791-805. [76] Bazarov V G, Lee E, Lineberry D, et al. Pulsator Designs for Liquid Rocket Injector Research[R]. AIAA2007-5156. [77] 杨尚荣, 杨岸龙, 李龙飞, 等. 喷前压力脉动对撞击式喷嘴雾化特性的影响[J]. 推进技术, 2017, 38(5): 1100-1106. [78] Mulmule A S, Tirumkudulu M S, Ananthkrishnan N, et al. Liquid Sheet Instability in the Presence of Acoustic Forcing[R]. AIAA2007-5688. [79] Mulmule A S, Tirumkudulu M S, Ramamurthi K. Instability of a Moving Liquid Sheet in the Presence of Acoustic Forcing[J]. Physics of Fluids, 2010, 22(2). [80] Dighe S, Gadgil H. Dynamics of Liquid Sheet Breakup in the Presence of Acoustic Excitation[J]. International Journal of Multiphase Flow, 2018, 99: 347-362. [81] Zhang P, Wang B. Effects of Elevated Ambient Pressure on the Disintegration of Impinged Sheets[J]. Physics of Fluids, 2017, 29(4). [82] Santoro R J, Anderson W E. Combustion Instability Phenomena of Importance to Liquid Propellant Engines[R]. The Pennsylvania University Technical ReportNo.93-0667. [83] Bazarov V G. Liquid Injector Dynamics[M]. Moscow: Mashinostroenie, 1979. [84] Bazarov V G. Liquid-Propellant Rocket Engine Injector Dynamics[J]. Journal of Propulsion and Power, 1998, 14(5): 797-806. [85] Bazarov V G. Design of Injectors for Self-Sustaining of Combustion Chambers Stability[R]. AIAA2006-4722. [86] Fu Q, Yang L, Qu Y, et al. Geometrical Effects on the Fluid Dynamics of an Open-End Swirl Injector[J]. Journal of Propulsion and Power, 2011, 27(5): 929-936. [87] Yang A, Yang S, Xu Y, et al. Periodic Atomization Characteristics of Simplex Swirl Injector Induced by Klystron Effect[J]. Chinese Journal of Aeronautics, 2018, 31(5): 1066-1074. [88] Cheng P, Li Q, Kang Z, et al. Response of Inner Flow and Spray Characteristics of a Pressure Swirl Injector to Pressure Oscillation Supply System[J]. Acta Astronautica, 2019, 154: 82-91. [89] 康忠涛, 王振国, 李清廉, 等. 压力振荡对气液同轴离心式喷嘴自激振荡的影响[J]. 航空学报, 2018, 39(6). [90] Khil T, Chung Y, Bazarov V G, et al. Dynamic Characteristics of Simplex Swirl Injector in Low Frequency Range[J]. Journal of Propulsion and Power, 2012, 28(2): 323-333. [91] Khil T, Kim S, Kim H, et al. Spray Characteristics of a Single Simplex Injector with Low Hydrodynamic Disturbance Generated by Pressure Fluctuation in Feed Line[C]. Kyoto: International Conference on Liquid Atomization and Spray System, 2006. [92] Chung Y, Kim H, Jeong S, et al. Dynamic Characteristics of Open-Type Swirl Injector with Varying Geometry[J]. Journal of Propulsion and Power, 2016, 32(3): 583-591. [93] 薛帅杰, 刘红军, 洪 流, 等. 厚液膜敞口型离心喷嘴动力学特性试验研究[J]. 航空学报, 2018, 39(12). [94] 杨岸龙, 杨尚荣, 费 俊, 等. 一种高频高幅值反压振荡雾化实验装置[P]. 中国专利: 201610858912.1, |
[1] | 王维彬,巩岩博. |
[2] | 张淼,徐浩海,李斌,邢理想. 流量调节器管路系统自激振荡特性研究[J]. 推进技术, 2021, 42(7): 1493-1500. |
[3] | 刘曌俞,王仙. 氧换热器在两相流条件下的压力脉动机理分析[J]. 推进技术, 2021, 42(7): 1501-1511. |
[4] | 张波涛,李平,王凯,陈宏玉. 针栓喷注器中心推进剂偏转角模型分析研究[J]. 推进技术, 2021, 42(7): 1534-1543. |
[5] | 曹亚文,李斌,王飞,林榕,韩先伟,谭畅. 高背压等离子点火器及其液体燃料点火特性实验研究[J]. 推进技术, 2021, 42(7): 1570-1580. |
[6] | 刘迪,孙冰,马星宇. 液氧 |
[7] | 林蓬成,郑晓宇,李龙贤,林奇燕,金志磊. 液体火箭发动机音叉式涡轮叶盘振动特性研究[J]. 推进技术, 2021, 42(7): 1636-1642. |
[8] | 刘昌国,关亮,施伟,王子模. 单组元 |
[9] | 匡亮,刘佩进,游艳峰,廖丹阳,杨文婧. 固体火箭发动机中声场对凝聚相粒子的影响[J]. 推进技术, 2021, 42(6): 1312-1320. |
[10] | 谭永华,李健,贺元军,周海京,王亚龙,李福秋,刘金燕. 一种针对液体火箭发动机可靠性的双线评估方法[J]. 推进技术, 2021, 42(2): 421-430. |
[11] | 何悟,郭志辉,傅江坤,薛永广,雷鸣. 主燃级喷嘴和燃油分级后雾化特性实验研究[J]. 推进技术, 2021, 42(1): 156-162. |
[12] | 张弛,陶超,韩啸,周宇晨,林宇震. 速度脉动下分层旋流火焰动态传播结构提取[J]. 推进技术, 2021, 42(1): 173-184. |
[13] | 邓凯,胡锦林,王明晓,钟毅,赵盛郎,钟英杰. 不同速度波动下氢含量变化对氢气-甲烷钝体火焰燃烧不稳定性的影响[J]. 推进技术, 2021, 42(1): 185-191. |
[14] | 郑浩铭,孙俊柠,朱呈祥,尤延铖. 幂律型流体撞击射流破碎特性直接数值模拟[J]. 推进技术, 2020, 41(8): 1895-1902. |
[15] | 杨成骁,王长辉. 液体火箭发动机推力室复合冷却流动与传热研究[J]. 推进技术, 2020, 41(7): 0-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
地址:北京7208信箱26分箱
邮政编码:100074
E-mail:tjjs@sina.com
访问总数:今日访问: 版权所有 © 《推进技术》编辑部